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ABSTRACT

A caterpillar s a tree which becomes a path when its endnodes are
removed. A two-legged caterpillar has maximum degree four. A strictly
two-Tegged caterpiliar has degree set {1,2,4} . While a characteriza-
tion of the two-legged caterpillars on 20 nodes which span a hypercube
Qn is at present unknown, we present classes of strictly two-legged
caterpillars which span hypercubes. A tight upper bound is given for the
number of nodes of degree four in strictly two-Tegged caterpillars which
span a hypercube.

I.Introduction

A caterpillar T is a tree which becomes a path when its endnodes
are removed. The path is called the spine of T. A k-Tegged caterpillar T
satisfies AT = k + 2. When the degree set of a k-Tegged caterpillar is
{1,2,k+2} > we call T strictly k-legged. Figure 1 depicts a strictly
2-legged caterpillar.

VAR N

Figure 1.A strictly 2-legged caterpillar.

The hypercube Qn is defined recursively by Q] = K2 and Qn= Qn_lx K2'
The order of Qn is 2", The hypercube is bipartite, i.e., 2-colorable,
and as its two color sets have the same number of nodes, it is equitable.
It follows that spanning trees of Qn are necessarily equitable. A charac-
terization of the caterpillars on 2N nodes which span Qn is currently un-
known, though Havel and Liebl proved the following in [2 ]

Theorem A. Equitable 1-legged caterpillars on 2" nodes span Qn. I
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I1.5trictly 2-legged caterpillars

We turn our attention to strictly 2-legged caterpillars which span
Qn' The following lemma establishes criteria for equitability. We omit
the proof.

Lemma 1. A strictly 2-legged caterpillar is equitable if and only if its
spine is of even order and it has the same number of nodes of degree
four in each of its two colors. ]

As a consequence of Lemma 1, strictly 2-legged caterpillars must
have an even number of nodes of degree four. We begin, therefore, with
strictly 2-Tegged caterpillars on 2" nodes with exactly two nodes of
degree four. The following Temma will be needed to establish our first
theorem.

Lemma la. Given non-adjacent edges e,e' € E(Qn)’ there exists a divi-
sion of Qn into two node-disjoint copies H and H' of Qn_1 such that

e € E(H) and e' € E(H').

Proof. Let e'= xy and e' = uv. Assume without loss of generality that
d(x,u) = min [:d(x,u),d(x,v),d(y,u),d(y,v)} . There are two cases.

Case 1. d(x,u) = 1. Let D be the unigue cut-set of 2“’1 edges such that
xu € D and Qn - D consists of two copies of Qn—l‘ Clearly e,e' ¢ D and
e and e' belong to different components of Qn - D.

Case 2. d(x,u) = k > 2. Let L be an x-u geodesic path. Let w be the ver-
tex of L adjacent to x. Let D be the cutset, as defined above, such that
xw € D. Let H and H' be the components of Qn - D containing x and w res-
pectively. Then xy € E(H). Now since L is a geodesic path and xw & D,
none of the remaining edges of L belong to D. Then since w &€ V(H'), so
is u, from which it follows that uv € E(H'). I

Theorem 1. Given an equitable strictly 2-Tegged caterpillar T on 2"
nodes (n > 4) with exactly two nodes of degree four, then T spans Qn'
Proof. Denote by U(Zn—4;k) the unicyclic graph formed by attaching two
pendant edges to each of two nodes x and y of a cycle of order 2" - 4,
with d{x,y} = k, as shown in Figure 2 for n =4 and k = 3.
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c///ﬁigure 2. The unicyclic graph U(12;3)i\\\*

104




To prove the thecrem, it suffices to show that for n » 4, U(2N-4;k)

>
spans Q, when k is an odd integer (by Lemma 1) and 1< k< on-l 3,
since any caterpillar of Theorem 1 can then be obtained by deleting a
cycle edge of U{2"-4;k). We proceed by induction.on n. For n = 4, Fig-
ure 3 exhibits an embedding of U(12;1). By deleting edges yc and yd and
adding uc and ud, we obtain an embedding of U{(12;3). If we then delete

xa and xb and add va and vb, we obtain an embedding of U(12;5).
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Figure 3. An embedding of U(12;1) in Qq.

Now assume that the theorem is true up to n - 1 and consider
U(2"-4;k). There are two cases.
Case 1. k € oh- 1. 5. Consider Q as two copies of Qn 1> called Qn 1 and
Qn 1s with "vertical" edges connect1ng corresponding nodes in both co-
pies. Let J = min(k, 2"~ 1og. k). By the inductive hypothesis, we can
embed U(Zn'1—4;j) in Q%_l. Let u and v be consecutive nodes on the path
of Tength 27°1 - 4 - k of the cycle of U(2"1-435) and Tet u' and v' be
their corresponding nodes in Qn 1- Let L be a hamiltonian u'-v' path for
QU 1- This 1is possible since hypercubes are hamilton laceable Ll ] Then
L U( 2n= 1—4 i) - uv7 Uwu' Uwvv' UL spans Q and is isomorphic to
u(2n-4;k).
Case 2 k = 2n 1 3. Aga1n consider Q as two copies of Q Embed
( —4 2oh- -3) in Q -1 Let e and. e' be cycle edges on oppos1te paths
between the two nodes of degree 4. By Lemma la, there exists a division
of Qh_l into two copies, G and H, of Qn_2 such that e € E(G) and e' €
E(H). Let G' and H' be the corresponding copies of G and H in Qg—l' De-
noting e by xy and e' by uv, let M be a hamiltonian x'-y' path for G' and
let N be a hamiltonian u'-v' path for H'. Then
[U(2"12:2"2.3) - xy - w Uxx' Uyy' Uua' Uww' UMUN spans q,
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and is isomorphic to U(2n-4;2n_1—3). |

We use the usual caterpillar code in which a sequence of non-nega-
tive integers denotes the number of non-spinal endnodes adjacent to the
spinal nodes. Figure 4 exhibits an embedding in Q, of (0,2,2,0,0,2,2,0).
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Figure 4. An embedding of (0,2,2,0,0,2,2,0) in Qa.

Theorem 2. The strictly 2-legged caterpillar with code
(0,2,2,0,0,2,2,...,0,0,2,2,0) spans Qn for n » 4.

Proof. By induction on n. Figure 4 shows that the theorem is true when

n = 4. Assume it is true for'n = k. Then let x be the first spinal node
(with code 0) of (0,2,2,...,0,0,2,2,0) which, by the inductive hypothesis
spans Qk. Now take another copy of Qk with the same caterpillar embedded
in it, and let x' in the second copy correspond to x. Upon adding "ver-
tical" edge xx', we obtain the required spanning caterpillar of Qk+1’
thereby completing the proof of the theorem. 1|

III. The maximum number of nodes of degree four

We ask for the maximum possible number of nodes of degree four in a
strictly 2-legged caterpillar which spans Qn' When n is odd, this num-
ber cannot exceed (2" - 2)/3, while when n s even, it cannot exceed
(Zn - 4)/3, since by Lemma 1, the rumber of nodes of degree four is even.
The next theorems show that these upper bounds are, in fact, achievable.

Theorem 3. Let n be an odd integer such that n > 5. Then there exists
a strictly 2-legged caterpillar Tn which spans Qn’ and Tn contains

(2n - 2)/3 nodes of degree four.

Proof. Let U, be the unicyclic graph on 2" nodes with a cycle of order
(2" + 4)/3 such that, with the exception of two adjacent cycle-nodes,
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each cycle-node has two pendant edges attached. Clearly, to prove The-
orem 3, it suffices to show that Un spans Qn for odd n > 5. We proceed
by induction on n. When n = 5, Figure 5 shows an embedding of U5 in
Q5. Note that U5 - ab 1in Figure 5 is the caterpillar

(0,2,2,2,2,2,2,2,2,2,2,0).
— /0 '\
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Figure 5. An embedding of Us in Qs.

Now assume the theorem is true for n = k {where k is odd), i.e., Uk
embeds in Qk and we must show that Uk+2 embeds in Qk+2' Consider Qk+2 as
four copies of Qk’ denoted Hi’ i=1,2,3,4 which may be thought of as Qk
upper Teft, upper right, Tower left, and Tower right, respectively.
Edges between H1 and H2 and between H3 and H4 are called "horizontal®,
while those between H1 and H3 and between H2 and H4 are "vertical". By
the inductive hypothesis, we embed U; into Hi for each i = 1,2,3.,4. For
each 1, let ai’bi’ci’ and di be consecutive cycle-nodes of degrees 4,2,
2, and 4, respectively, such that the subgraphs of Qk+2 induced by the
ai’bi’ci’ and di are 4-cycles, '

We construct Uk+2 from the embedded U; as follows. Delete edges
blcl’cldl’aZbZ’b3C3’c3d3 and a4b4. Then add horizontal edges €10 and
€38 and vertical edges a2a4,b1b3,c2c4, and d1d3. Finally, select two
consecutive cycle-nodes uy and vy of Uk with corresponding cycle-nodes
Uy and Vo of UE and add horizontal edges Uqusy and v,v, while deleting

172
upvq and Uyv,. The resulting copy of Uk+2 spans Qk+2' 0
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Theorem 4. Let n be an even integer such that n 2 6. Then there exists
a strictly 2-legged caterpillar which spans Q and contains (2" - 4)/3
nodes of degree four.

Proof. Consider Qn as two node-disjoint copies,H1 anq H2 of Qn-l' Since
n -1 1is odd, by Theorem 3, Hi contains a copy of U;_l, with nodes a
b.,ci, and di {for 1 =1 and 2) as previously defined. We obtain the

i -
desired spanning caterpillar of Qn from the U’ by adding the edge

n-1
; i
dld2 and deleting edges cld1 and c2d2. As each of the Un-l has

(2”‘1 - 2)/3 nodes of degree four, the caterpillar we constructed has

-i’

twice this number of nodes of dearee four, proving the theorem. ]
Note that Theorem 4 yields the correct number for n = 4, though the
method of proof is inapplicable in this case.
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