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Abstract. A graph G of order n is even-pancyclic if it contains cy-
cles of all possible even lengths 4, 6, 8, . . . , 2

�
n

2 � . The 2-dimensional

mesh M(m, n) is the Cartesian product of the two paths Pm and Pn.

We present several results on even-pancyclic subgraphs of meshes.

1. Introduction

We follow the notation of [1]. The reader is reminded that a graph G

of order n is pancyclic if it contains cycles of all lengths k, 3 ≤ k ≤ n.
Pancyclic graphs have been studied in [2, 3, 4, 5]. A graph G of order n is
even-pancyclic if it contains cycles of all even lengths 2k, 2 ≤ k ≤

⌊

n
2

⌋

. The
2-dimensional mesh, or 2-mesh, M(m, n) is the Cartesian product of paths
Pm and Pn. The n-dimensional mesh M(a1, a2, . . . , an) is the Cartesian
product of paths of orders a1, a2, . . . , an. A mesh is even if its order is
even, otherwise it is odd. The ladder Ln is the mesh M(2, n). The ladder
M(2, n) contains n rungs corresponding to the n copies of P2. A graph G
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is traceable if it contains a Hamiltonian path. The fan Fn, n ≥ 3, is K1

joined with the path Pn−1. For n ≥ 3, the wheel W1,n is K1 joined with
the cycle Cn. Clearly, the fan Fn and the wheel W1,n are pancyclic and the
ladder Ln is even-pancyclic. In fact we can say the following:

Theorem 1. Let G be traceable, then G × K2 is even-pancyclic.

Proof. Since G has a Hamiltonian path, G × K2 contains the ladder Ln

where n is the order of G. �

Theorem 2. Let G be traceable, K1 + G is pancyclic.

Proof. If G is traceable, then K1 + G contains the fan Fn+1 as a subgraph
where n is the order of G. �

The generalized wheel Wm,n defined by Buckley and Harary [6] is Km +
Cn.

Theorem 3. The generalized wheel Wm,n is pancyclic if and only if m ≤ n.

Proof. Label the nodes of Km as u1, u2, . . . , um and the nodes of Cn as
v1, v2, . . . , vn. Clearly, Wm,n contains W1,n as a subgraph. In fact, the
induced subgraph on u1, v1, v2, . . . , vn is W1,n which is pancyclic containing
cycles C3, C4, . . . , Cn+1. There are n identical Hamilton cycles Cn+1 up to
labeling, one such cycle is u1v1, v1v2, v2v3, . . . , vn−1vn, vnu1. Each edge
vi−1vi, i = 2, . . . , n, is an edge from the original cycle Cn and not an edge
from the join, whereas u1v1 and vnu1 are edges resulting from the join
operation. To connect the remaining m−1 nodes u2, u3, . . . , um of Km and
obtain cycles Cn+2, Cn+3, . . . , Cn+m simply replace one of the vi−1vi edges
with two edges vi−1uj and ujvi, j = 2, . . . , m. This can be done at most
n − 1 times. Thus, m can be at most n. �

A ruler is a strictly increasing finite sequence of nonnegative integers
called marks. A segment of a ruler is the space between two adjacent
marks. The number of segments is the number of marks less one. A ruler is
complete if the set of all distances it can measure is {1, 2, 3, ..., k} for some
integer k ≥ 1. By convention, the first mark is 0. A complete ruler can
therefore measure all distances from 1 to its length. A ruler is perfect if
it is complete and no complete ruler with the same length possesses fewer
marks. [7]

2. Even-Pancyclic Subgraphs of Ladders

We wish to determine the minimum number of edges in even-pancyclic
spanning subgraphs of ladders. The ladders L2 and L3 have the property
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that all edges are required in order for them to be even-pancyclic, while L4

only requires one of its interior rungs. (See Figure 1)

L2 L3 L
4
- e

Figure 1

If we label the rungs of the ladder Ln as 0, 1, 2, . . . , n − 1, the numbers
that correspond to the rungs necessary for a subgraph of Ln with 1 ≤ n ≤ 8
to be even-pancyclic are as follows:

Ln Rungs required

L1 {0}
L2 {0, 1}
L3 {0, 1, 2}
L4 {0, 1, 3} or {0, 2, 3}
L5 {0, 1, 3, 4} , {0, 1, 2, 4} , or {0, 2, 3, 4}
L6 {0, 1, 3, 5}, {0, 1, 2, 5}, {0, 3, 4, 5}, or {0, 2, 4, 5}
L7 {0, 1, 4, 6}, or {0, 2, 5, 6}
L8 there are 12 of them

These are exactly the marks required for a ruler to be of perfect. In
fact, there is a direct correspondence between the marks of a perfect ruler
and the rungs in an edge minimal even-pancyclic spanning subgraph of a
ladder. Recall, that the number of marks is one more than the number
of segments in the ruler. The number of segments in a perfect ruler with
length k is given in the sequence A103298 of The On-Line Encyclopedia of
Integer Sequences (OEIS) [8]. The minimum number of rungs is, therefore,
one more than this number. This gives us the following theorem.

Theorem 4. The minimum number of edges in an even-pancyclic spanning

subgraph of the ladder Ln is 2n + an−1 − 1, where ai is the number of

segments in a perfect ruler with length i given by the sequence A103298 of

the OEIS.

Proof. The rails of the ladder are the two copies of Pn which have n − 1
edges. The number of rungs needed is equal to the number of marks on a
perfect ruler of length n−1, which is an−1+1. The constructed subgraph has
2(n−1)+an−1+1 = 2n+an−1−1 edges. This number is minimal because if
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we remove an edge from one of the rails we lose the Hamiltonian cycle, if we
remove a rung we would have a perfect ruler with less marks. By definition,
the perfect ruler has the fewest marks. To see that this subgraph is even-
pancyclic, note that all lengths from 1 to n−1 are represented along the rails
between at least two of the rungs, this yields all cycles C4, C6, . . . , C2n. �

Remark 1. The number of edge minimal even-pancyclic spanning subgraphs
of the ladder Ln+1 is the same as the number of perfect rulers of length n

and this is given by the sequence A103300 of the OEIS.

Remark 2. The total number of even-pancyclic spanning subgraphs of the
ladder Ln+1 is the same as the number of complete rulers of length n and
this is given by the sequence A103295 of the OEIS.

As for uniquely even-pancyclic subgraphs of ladders, these correspond to
perfect Golomb rulers. A Golomb ruler is a ruler with the property that
no two pairs of marks are the same distance apart. A perfect Golomb ruler
measures all of the distances up to its length uniquely. Golomb [9] showed
there are no perfect rulers with more than 4 marks. With this in mind, the
only uniquely even-pancyclic subgraphs of ladders are shown in Figure 2.

Figure 2. The Uniquely Even-Pancyclic Subgraphs of Ladders

3. Even-Pancyclic Subgraphs of Meshes

We wish to find even-pancyclic spanning subgraphs of higher dimensional
meshes. For 2-dimensional meshes, we present the following theorem.

Theorem 5. Every 2-dimensional mesh M(m, n) contains even-pancyclic

subgraph on mn + abmn

2 c−1
−mn mod 2− 1 edges, where ai is the number

of segments of a perfect ruler with length i given by the sequence A103298

of the OEIS.
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k even k odd 

Figure 3. The “twisted” ladder Lkn

Proof. We divide into two cases, even and odd meshes, and show how such
a subgraph is constructed.

Case 1. The mesh is even. A mesh is even if its order is even. For a
2-dimensional mesh M(m, n), this means that at least one of m and n is
even. Without loss of generality, say m is even, hence m = 2k. As shown
in Figure 3, an even mesh contains a subgraph that represents a “twisted”
ladder. The difference depends on whether k is even or k is odd. In either
case, number the rungs from 0 to

⌊

mn
2

⌋

−1 = kn−1, then remove all rungs
except those corresponding to the marks of a perfect ruler of length kn−1.
The resulting subgraph is even-pancyclic. Thus, every even 2-dimensional
mesh M(m, n) contains a subgraph that is even-pancyclic and whose total
number of edges is mn + a(mn

2 −1) − 1, where ai is the number of segments

of a perfect ruler with length i given by the sequence A103298 of the OEIS.

Case 2. The mesh is odd. If M(m, n) is odd, then m and n are both odd.
This means that m and n are either of the form 4t + 1 or 4t + 3. We again
divide into two cases.

Case 2a. At least one of m or n is of the form 4t + 1. In this case, label
a corner node, one of degree 2, v. The graph M(m, n) − v contains the
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spanning “twisted” ladder subgraph shown in Figure 4.

4

---------------------------------------------------------

3

t+1

v

Figure 4

If we again number the rungs from 0 to
⌊

mn
2

⌋

−1 and remove all rungs ex-

cept those corresponding to the marks of a perfect ruler of length
⌊

mn
2

⌋

−1,
we will obtain the required even-pancyclic subgraph.

Case 2b. Both m and n are of the form 4t + 3.
In this case, label a node of degree 3 a distance 2 away from a corner

node, v. The graph M(m, n) − v contains the spanning “twisted” ladder
subgraph shown in Figure 5.

Again number the rungs from 0 to
⌊

mn
2

⌋

−1 and remove all rungs except

those corresponding to the marks of a perfect ruler of length
⌊

mn
2

⌋

−1. If we
do this, we will obtain an even-pancyclic subgraph on mn + a (mn−1)

2 −1
− 2

edges, where ai is the number of segments of a perfect ruler with length i

given by the sequence A103298 of the OEIS. �

Since every higher dimensional mesh contains a spanning 2-dimensional
mesh, the corollary follows.

Corollary 1. Every mesh of order p contains even-pancyclic spanning sub-

graphs on p + ab p

2 c−1
− p mod 2− 1 edges, where ai is the number of seg-

ments of a perfect ruler with length i given by the sequence A103298 of the

OEIS.
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4
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3

t+3

v

Figure 5

4. Pancyclic Subgraphs of Fans and Wheels

Consider the fan Fn and the wheel graph W1,n. Since the fan Fn+1 is a
subgraph of the wheel W1,n, any result regarding spanning subgraphs for
the first will apply to the latter. Recall, the fan Fn, n ≥ 3, is K1 + Pn−1.
The K1 node is called the core. The edges incident with the core are called
spokes. For the fan Fn, we can label the spokes 0, 1, 2, . . . , n − 2. Then
remove the spokes which do not correspond to the marks on a perfect ruler
of length n − 2. Therefore, we have the following:

Theorem 6. The fan Fn contains edge minimal pancyclic subgraphs on

n + an−2 − 1 edges.

Proof. The number of edges in the path is n − 2 to this we add only the
spokes that correspond to the marks on a perfect ruler of length n−2 which
is an−2+1 where ai is the number of segments of a perfect ruler with length
i given by the sequence A103298 of the OEIS. This number is minimal
because if we remove an edge from the path we lose the Hamiltonian cycle
and if we remove a spoke we would have a perfect ruler with less marks. By
definition the perfect ruler has the fewest marks. To see that the subgraph is
pancyclic, note that all distances from 1 to n−2 are represented between at
least two spokes, together with the 2 spokes, yields all cycles C3, C4, . . . , Cn.

�
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Corollary 2. The wheel W1,n contains edge minimal pancyclic subgraphs

on n + an−1 edges.

Proof. W1,n contains the fan Fn+1 as a subgraph. �

Remark 3. The number of edge minimal pancyclic subgraphs of the fan
Fn+2 is the same as the number of perfect rulers of length n and this is
given by the sequence A103300 of the OEIS. The wheel W1,n+1 contains
n+1 subgraphs isomorphic to Fn+2. Therefore, the number of edge minimal
pancyclic subgraphs of the wheel W1,n+1 is (n+1)an where an is the number
of perfect rulers of length n given by the sequence A103300 of the OEIS.

Remark 4. The total number of pancyclic subgraphs of the fan Fn+2 is the
same as the number of complete rulers of length n and this is given by the
sequence A103295 of the OEIS. Similarly, the total number of pancyclic
subgraphs of the wheel W1,n+1 is n + 1 times this number.
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